
©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 1

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Figure 11.1 - Basic DBMS Architecture

2

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 3

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

SQL Query Order of Execution*

4
* https://www.eversql.com/sql-order-of-operations-sql-query-order-of-execution/?

https://www.eversql.com/sql-order-of-operations-sql-query-order-of-execution/?utm_source=pocket_mylist

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

DB Access Plan I/O Ops

5

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Indexes
Indexes can allow duplicate values or not.

CREATE INDEX index_name
ON table_name (column1, column2, …);

CREATE UNIQUE INDEX index_name
ON table_name (column1, column2, …);

You can DROP an index but can not ALTER one.

ALTER TABLE table_name
DROP INDEX index_name;

6

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Some simple equivalencies

7From Silberschatz, 11th ed.

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Equivalent expressions

8From Silberschatz, 11th ed.From Silberschatz, 11th ed.

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 9

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 10

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Example from Silberschatz

instructor(ID,pname,dept_name,salary)
teaches(ID, course_id, sec_id, semester, year)
course(course_id, title, dept_name,credits)

Find the names of all instructors in the Music
department who taught in 2009 together with the course
title of all the courses the instructors taught.

11From Silberschatz, 11th ed.

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 12

ΠpName,title(σdept_name=′￼Music′￼∩year=2009(instructor ⋈ (teaches ⋈ Πcourse_id,title(course))))

Apply 6A to transform this (instructor ⋈ (teaches ⋈ Πcourse_id,title(course))

(instructor ⋈ teaches) ⋈ Πcourse_id,title(course)into

to obtain

ΠpName,title(σdept_name=′￼Music′￼∩year=2009((instructor ⋈ teaches) ⋈ Πcourse_id,title(course)))

From Silberschatz, 11th ed.

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 13

ΠpName,title(σdept_name=′￼Music′￼∩year=2009((instructor ⋈ teaches) ⋈ Πcourse_id,title(course)))

Apply 7a to obtain this

ΠpName,title(σdept_name=′￼Music′￼∩year=2009((instructor ⋈ teaches)) ⋈ Πcourse_id,title(course))

From Silberschatz, 11th ed.

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 14

ΠpName,title(σdept_name=′￼Music′￼∩year=2009((instructor ⋈ teaches)) ⋈ Πcourse_id,title(course))

Apply 1 to break up the select

σdept_name=′￼Music′￼(σyear=2009(instructor ⋈ teaches))

Apply 7a again

σdept_name=′￼Music′￼instructor ⋈ σyear=2009instructor ⋈ teaches

Giving the final result

ΠpName,title(σdept_name=′￼Music′￼instructor ⋈ σyear=2009instructor ⋈ teaches)

⋈ Πcourse_id,title(course)

From Silberschatz, 11th ed.

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 15

course_id ,title∏

From Silberschatz, 11th ed.

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Evaluation Plan example
SELECT P_Code, P_Descript, P_Price, V_Name, V_State
FROM Product, Vendor
WHERE Product.V_Code = Vendor.V_Code AND
 Vendor.C_State = ‘FL';

We know that:
1. the Product table has 7,000 rows
2. the Vendor table has 300 rows
3. 10 Vendors are in FL
4. 1,000 products come from the vendors in FL

Without doing a query, the optimizer only knows 1 & 2.

16

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Access Plans vs. I/O Costs

17

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 18

EXPLAIN ANALYZE is a profiling tool for your queries that will show you where
MySQL spends time on your query and why. A great explanation is at

https://dev.mysql.com/blog-archive/mysql-explain-analyze/

SQL query analysis tools

The MySQL optimizer determines the most efficient means of executing a query.
You can use Optimizer Tracing to see just how the query optimizer works

https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_OPT_TRACE.html

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Writing efficient SQL
Use the cache, Luke!

Avoid non-determinism

19

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Writing efficient SQL
If you only want one, tell SQL!

20

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

• Whenever possible (and enforceable) use CHAR(n) instead
of VARCHAR(n) (and TEXT and BLOB) since fixed-size
attributes are always faster.

• Keep your primary keys integers whenever you can.

• Don't use DISTINCT when you have or could use GROUP
BY.

• Avoid wildcard characters at the beginning of LIKE clauses.
If the first characters are specified, then the DB can use the
index to speed up the LIKE search/matching. The worst
case is "%ski%" which prevents any index help

21

Writing efficient SQL

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Writing efficient SQL

22

Avoid SELECT * when you can

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Writing efficient SQL

23

Use PREPARED STATEMENTS when getting user input

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Writing efficient SQL

24

Use PREPARED STATEMENTS when getting user input

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Writing efficient SQL

25

Use literals/constants in conditional expressions

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

• When you know you will be joining two tables, make sure the
attributes being used for that join are indexed!

• Always test equality conditions first - they're the easiest to
process.

• Numeric field comparisons are always faster than character,
date, and NULL comparisons.

• Functions are convenient, but using them in a conditional can be
very expensive especially for larger tables.

• Avoid the use of the NOT logical operator when possible.

26

Writing efficient SQL

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

• When using multiple OR conditions, put the one most likely
to be true first (this is a good thing to do in any
programming language).

• Similarly, when using multiple AND conditions, put the one
most likely to be false first (also a good thing to do in
programming in general). [Coronel]

• Use the DESCRIBE to learn about tables and EXPLAIN to
understand

27

Writing efficient SQL

