Slashdot Posting Bug Infuriates Haggard Admins

Posted by CmdrTaco on Thursday November 09, 2006 @11:45AM
from the this-is-never-good dept.

Last night we crossed over 16,777,216 comments in the database. The wise amongst you might note that this
number is 2424, or in MySQLese an unsigned mediumint. Unfortunately, like 5 years ago we changed our primary
keys in the comment table to unsigned int (32 bits, or 4.1 billion) but neglected to change the index that handles
parents. We're awesome! Fixing is a simple ALTER TABLE statement... but on a table that is 16 million rows long,
our system will take 3+ hours to do it, during which time there can be no posting. So today, we're disabling
threading and will enable it again later tonight. Sorry for the inconvenience. We shall flog ourselves appropriately.
Update: 11/10 12:52 GMT by J : It's fixed.

Figure 11.1 - Basic DBMS Architecture

DBMS server
computer
Client
computer
SQL User
query . process
Listener
Scheduler Lock Optimizer
manager
Result set ‘
is sent SQL cache Data cache operations
back to .
. Data files

client

DBMS processes Database data files
running in primary stored in permanent
memory (RAM) secondary memory
(hard disk)
Cengage Learning © 2015

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 2

Select
From... }
her il

Data files
O —

SQL cache

Parsing 1

phase

Access plan

e Syntax check

* Naming check

e Access rights check

e Decompose and analyze

* Generate access plan

e Store access plan in SQL cache

‘lllllllIlIIIlIIIlllllllllllllllllllIlllllllllIIlllllllllllllllllllllllllllllk

Execution

h llllll*
phase

Data cache

e Execute 1/O operations

* Add locks for transaction mgmt

¢ Retrieve data blocks from data files
e Place data blocks in data cache

Fetching

phase

¢ Generate result set

Cengage Learning © 2015

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

-
SQL Query Order of Execution™

FUNCTION
1T from Choose and join tables to get base data.
2 where Filters the base data.
3 group by Aggregates the base data.
4 having Filters the aggregated data.
5 select Returns the final data.
6 order by Sorts the final data.
7 limit Limits the returned data to a row count.

* https://www.eversgl.com/sgl-order-of-operations-sgl-query-order-of-execution/?

https://www.eversql.com/sql-order-of-operations-sql-query-order-of-execution/?utm_source=pocket_mylist

DB Access Plan 1/0 Ops

OPERATION DESCRIPTION

Table scan (full)

Reads the entire table sequentially, from the first row to the last, one row at a
time (slowest)

Table access (row ID)

Reads a table row directly, using the row ID value (fastest)

Index scan (range)

Reads the index first to obtain the row IDs and then accesses the table rows
directly (faster than a full table scan)

Index access (unique)

Used when a table has a unique index in a column

Nested loop Reads and compares a set of values to another set of values, using a nested
loop style (slow)
Merge Merges two data sets (slow)
Sort Sorts a data set (slow)
Cengage Learning © 2015

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Indexes

Indexes can allow duplicate values or not.

CREATE INDEX index_name
ON table_name (columnl, column2, ..);

CREATE UNIQUE INDEX index_name
ON table _name (columnl, column2, ..);

You can DROP an index but can not ALTER one.

ALTER TABLE table name
DROP INDEX index_name;

Some simple equivalencies

/N 0 - . /M 0
E1l \EZ E2 \El
2N SN
X E3 El X
PN AN
O X
[>|<]) If © only has] / \EZ
attributes from E1 Gg
<)

From Silberschatz, 11th ed.

Equivalent expressions

name, title

dept_name = Music

instructor / > \
teaches course

From Silberschatz, 11th ed.

I1

name, title

>

N

Gdept_name = Music M

AN

course

instructor teaches

1. Selection operators are commutative
0g, 0,(E) = 0g,(0g,(E))

2. Selection operators are commutative
0g,(0g,(E)) = 0g,(06,(E))

3. In a sequence of Projection operators, only Ithe last one is needed
M, (Mg, ... (N (E))) =M, (E)

4. Selection can be combined with Cross products and theta joins
a. 0g(Eq x E») = E1 Mg Eo
b. 0g,(E1Mg, E2) = E1Xg, .0,E2

5. Theta joins are commutative

Eq Xg Ez = Ez Mg Ey

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 9

6. Natural joins are a special case of theta joins, so they are also commutative
a. (E1 MgEp) M E3 = E¢ Mp(E2 X Ej)
b. Theta joins are also associative sometimes:

(E1 Mg,E2) Mg,00,E3 = E1Xg, 18,(E2Xp,E3)
where 6, only involves attributes from E»> and E3 .

7. Selection distributes over theta-join sometimes:
a. When 64 only involves attributes of E;

0g,(E1™g,E2) = (0g,(E1))XgE>
b. When 84 only involves attributes of E1 and 62, involves only attributes of E»

Og,0,(E1Xa,E2) = (0g,(E1))™e,(06,(E2))

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

10

Example from Silberschatz

instructor(ID,pname,dept_name,salary)
teaches(ID, course_id, sec_id, semester, year)

course(course_id, title, dept_name credits)

Find the names of all instructors in the Music
department who taught in 2009 together with the course
title of all the courses the instructors taught.

From Silberschatz, 11th ed.

HpName,title(Gdept_name=’Music’nyear=2009(lnStruCtor o\ (teaCheS X Hcourse_id,title(course))))

Apply 6A to transform this (instructor X (teaches X I1 (course))

course_id,title

into (instructor X teaches) X 11 (course)

course_id.title

to obtain

IT

pName,title(O-dept_name= (COMI” A) 6)))

’Music’nyear=2009((lnStrucror X teaches) X 11, 0 iasite

From Silberschatz, 11th ed.

I1

pName,title(adept_name: (COMFSB)))

/Music/nyear=2()09((lnStruCtor X teaches) W 11, iaitte

Apply 7a to obtain this

HpName,title(Gdept_name=’Music’nyear=2009((lnS tructor X teaCheS)) X Hcourse_id,title(cour Se))

From Silberschatz, 11th ed.

HpName,title(o-dept_name=’Music’myear=2009((lns tructor X teaCheS)) X Hcourse_id,title(cour Se))

Apply 1 to break up the select

O dept_name="Musi C,(ayearzzoog(instructor X teaches))

Apply 7a again

Odept_name='"MusicVSITUCTOT DA Oy oot STrUCtor X teaches

Giving the final result

I1

oName.titleOdept_name="MusictSTTUCIOT X Oy ool Structor X teaches)

X T1 (course)

course_id,title

From Silberschatz, 11th ed.

I1

><] Fradtfot

/ | | ocourse_id title

[><] (merge join) COMTS P

plpelm/ \)1pelme

de t_name = Music year 2009
(use index 1) (use linear scan)

.. (sort to remove duplicates
name, tztle(P)

imstructor teaches

From Silberschatz, 11th ed.

Evaluation Plan example

SELECT P_Code, P_Descript, P_Price, V_Name, V_State

FROM Product, Vendor

WHERE Product.V_Code
Vendor.C _State

Vendor.V_Code AND
lFLI;

We know that:

1. the Product table has 7,000 rows

2. the Vendor table has 300 rows

3. 10 Vendors are in FL

4., 1,000 products come from the vendors in FL

Without doing a query, the optimizer only knows 1 & 2.

Access Plans vs. I/O Costs

OPERATION

1/0

OPERATIONS

1/0 COST

RESULTING

SET ROWS

TOTAL1/0

COST

A Al Cartesian product 7,000 + 300 7,300 2,100,000 7,300
(PRODUCT, VENDOR)
A2 Select rows in AT with 2,100,000 2,100,000 | 7,000 2,107,300
matching vendor codes
A3 Select rows in A2 with 7,000 7,000 1,000 2,114,300
Ve STATE=SE
B B1 Select rows in VENDOR with | 300 300 10 300
VaSTANESEEE
B2 Cartesian Product 7,000 + 10 7,010 70,000 7,310
(PRODUCT, BT1)
B3 Select rows in B2 with 70,000 70,000 1,000 77,310
matching vendor codes
Cengage Learning © 2015

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

17

SQL query analysis tools

EXPLAIN ANALYZE is a profiling tool for your queries that will show you where
MySQL spends time on your query and why. A great explanation is at

https://dev.mysql.com/blog-archive/mysql-explain-analyze/

The MySQL optimizer determines the most efficient means of executing a query.
You can use Optimizer Tracing to see just how the query optimizer works

https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_OPT_TRACE.html

Writing efficient SQL
Use the cache, Luke!
Avoid non-determinism

// query cache does NOT work
$r = mysql_query("SELECT username FROM user WHERE signup_date >=

CURDATE()");

// query cache works!

$today = date("Y-m-d");

$r = mysql_query("SELECT username FROM user WHERE signup_date >=
'$today'");

Writing efficient SQL

If you only want one, tell SQL!

// do I have any users from Alabama?

// what NOT to do:
+ $r = mysql_query("SELECT *x FROM user WHERE state
1f (mysgl_num_rows($r) > 0) {

//

// much better:
$r = mysql_query("SELECT * FROM user WHERE state
LIMIT 1");

1f (mysgl_num_rows($r) > 0) {
//

'Alabama'");

'Alabama’

Writing efficient SQL

e Whenever possible (and enforceable) use CHAR(n) instead
of VARCHAR(n) (and TEXT and BLOB) since fixed-size
attributes are always faster.

e Keep your primary keys integers whenever you can.

e Don't use DISTINCT when you have or could use GROUP
BY.

e Avoid wildcard characters at the beginning of LIKE clauses.
If the first characters are specified, then the DB can use the
index to speed up the LIKE search/matching. The worst
case is "%ski%" which prevents any index help

Writing efficient SQL

Avoid SELECT * when you can

// not preferred

$r = mysqgl_query("SELECT * FROM user WHERE user_id = 1");
$d = mysql_fetch_assoc($r);

+ echo "Welcome {$d['username']}";

// better:

$r = mysgl_query("SELECT username FROM user WHERE user_id = 1");
$d = mysql_fetch_assoc($r);

echo "Welcome {$d['username']}";

// the differences are more significant with bigger result sets

Writing efficient SQL

Use PREPARED STATEMENTS when getting user input

1 // create a prepared statement
2 if ($stmt = $mysqli->prepare("SELECT username FROM user WHERE
state=?")) {

3

4 // bind parameters

5 $stmt->bind_param("s", $state);
6

7 // execute

8 $stmt->execute();

9

10 // bind result variables

11 $stmt->bind_result($username);
12

13 // fetch value

14 $stmt->fetch();

15

16 printf("%s 1is from %s\n", $username, Pstate);
17

18 $stmt->close();

19 }

Writing efficient SQL

Use literals/constants in conditional expressions

/* not good as a conditionx/
. WHERE P_Price - 10 = 7;
/* better */
. WHERE P_Price = 17;

/* not good as a conditionx/

. WHERE P_QOH < P_MIN AND P_MIN = P_REORDER AND P_QOH = 10
/* better *x/

. WHERE P_QOH = 10 AND PMIN = P_REORDER AND P_MIN > 10

Writing efficient SQL

e When you know you will be joining two tables, make sure the
attributes being used for that join are indexed!

e Always test equality conditions first - they're the easiest to
process.

e Numeric field comparisons are always faster than character,
date, and NULL comparisons.

e Functions are convenient, but using them in a conditional can be
very expensive especially for larger tables.

e Avoid the use of the NOT logical operator when possible.

Writing efficient SQL

e When using multiple OR conditions, put the one most likely
to be true first (this is a good thing to do in any
programming language).

e Similarly, when using multiple AND conditions, put the one
most likely to be false first (also a good thing to do in
programming in general). [Coronel]

e Use the DESCRIBE to learn about tables and EXPLAIN to
understand

